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Quantum Monte Carlo (QMC) is an extremely powerful method to treat many-body systems.
Usually quantum Monte Carlo has been applied in cases where the interaction potential has a
simple analytic form, like the 1/r Coulomb potential. However, in a complicated environment as in a
semiconductor heterostructure, the evaluation of the interaction itself becomes a non-trivial problem.
Obtaining the potential from any grid-based finite-difference method, for every walker and every step
is unfeasible. We demonstrate an alternative approach of solving the Poisson equation by a classical
Monte Carlo within the overall quantum Monte Carlo scheme. We have developed a modified
“Walk On Spheres” algorithm using Green’s function techniques, which can efficiently account for
the interaction energy of walker configurations, typical of quantum Monte Carlo algorithms. This
stochastically obtained potential can be easily incorporated within popular quantum Monte Carlo
techniques like variational Monte Carlo (VMC) or diffusion Monte Carlo (DMC). We demonstrate
the validity of this method by studying a simple problem, the polarization of a helium atom in the

electric field of an infinite capacitor.

PACS numbers: 02.70.5s,02.70.Tt
I. INTRODUCTION

Simulation of an N-particle quantum system is essen-
tially solving the Schrodinger’s equation involving the
3N-dimensional wave-function which defines the state
of the system. Stochastic methods like quantum Monte
Carlo (QMC) are very appropriate, useful and accurate
to treat systems of such large dimensionality’2. These
methods have been applied extensively to study proper-
ties like cohesive energies of molecules?, solids*, proper-
ties of the electron gas®%, solid hydrogen™®, clusters® and
much more.

Recently there has been great interest in study-
ing semiconductor devices operating in highly quantum
regimes, like quantum dot devices'®, quantum wires'!,
single electron transistors'? etc. For simulation purposes
structural details of these devices are usually represented
by simple analytically tractable models'®. However these
models sometimes lead to an inadequate description of
the interaction energies'. There have been only a lim-
ited number of applications of quantum Monte Carlo to
realistic models of such physical devices capturing the
details of the potential profile'®, and even this known
work has been restricted to making simplifying assump-
tions on the form of the potential. The reason is that
while simulation of natural or idealized structures involve
interactions with simple analytic forms (like Coulomb,
Lennard-Jones etc.), the interaction in artificial devices
is too complicated to be efficiently treated within quan-
tum Monte Carlo. Our goal is to extend the application
of quantum Monte Carlo to semiconductor devices in a
simple and straightforward way.

Among the several quantum Monte Carlo methods, we
will mainly focus on zero temperature methods like varia-
tional Monte Carlo (VMC)!6 and diffusion Monte Carlo
(DMC), since these are the simplest to code and most
extensively used. We should mention here that our ap-
proach can also be used in conjunction with any other
kind of quantum or classical Monte Carlo algorithms.
The methods we are concerned with, i.e. variational and
diffusion Monte Carlo both follow the same basic idea,
they calculate expectation of observables associated with
a particular state of the system. Consider an N-particle
system, and denote the coordinate of the i-th particle by
q;- The simulation generates a set of M configurations
{R}, called “walkers”.

{R}:Rl,...,Rm,...,RM. Rm:{qh...,qN}Vm,

i.e. each walker is a realization of the system in a partic-
ular configuration. The algorithm to generate {R} de-
pends on the method involved, but it results in the walk-
ers being distributed according to (or something close to)
U2 where U is the relevant state. Accurate estimate of
any observable can then be obtained.

Application of these methods to an entire device struc-
ture can be prohibitively expensive. Progress can be
made by isolating the physical region dominated by
quantum mechanics from the background, which can be
treated semi-classically. The walkers are created only in
the quantum region and are confined there. The potential
profile in this region is thus governed by the complicated
inter-particle interactions, the effect of the semi-classical
background, induced image charges and the gate voltages
on the surface boundary of the device. The net effect in
general is very complicated.



This potential profile is however the defining charac-
teristic of the system. The quantum Monte Carlo al-
gorithms inevitably involve repeated computation of the
potential energy V(R,,) of each walker configuration R,,
during and after their evolution into the final equilibrium
distribution. In general, there will be no analytic expres-
sion for V(R,;,) except in highly idealized cases, and will
have to be obtained as an explicit solution of Poisson’s
equation at every step. This is unfeasible for any grid
based finite element like method.

The only application'® of quantum Monte Carlo to re-
alistic devices that we know of, circumvents this by ap-
proximating the background potential by a self-consistent
Poisson-Schrodinger solution using an LSDA quantum
charge density. The walkers move around in this rigid
background, and the particles interact by a simple
Coulomb interaction. But strictly speaking, the inter-
action is not Coulomb-like, it is modified by the in-
duced charges at dielectric interfaces and metal sur-
faces. Also the LSDA approximation itself breaks down
for highly correlated systems producing theoretically im-
possible results like predicting phase transitions in fi-
nite systems'”'8. However, we will show that quantum
Monte Carlo can be applied to realistic models of such
systems without these approximations, if we can solve
the potential stochastically.

Our stochastic approach has several advantages. Tra-
ditional grid based methods expend a lot of computation
in solving the equation at all grid points over the entire
device. These grid points are placed at discrete inter-
vals, and thus limit the resolution of the device struc-
ture. This resolution can be increased only at consider-
able cost. However, the stochastic method obtains the
solution only at the desired points (for e.g. the walker
configuration R,,). Secondly, this does not suffer from
the resolution issues of the grid based methods, any point
can be treated with arbitrary accuracy. Moreover, the
stochastic methods can handle regions of very sharp gra-
dients much more effectively than grid based counter-
parts.

In this introductory paper we will only present the
mechanism of using the stochastic potential solver in con-
junction with quantum Monte Carlo. To this end, we will
investigate a very simple system with a known analytic
potential, to test the applicability of this method. Ap-
plication to realistic devices will be presented in future
work. The rest of the paper is organized as follows. In
section IT we describe the existing methods of solving
Poisson’s equation by Monte Carlo. In section III, we
adapt this method to account for discrete point charges
like walker densities. In section IV, we describe differ-
ent techniques by which we can greatly increase the ef-
ficiency for certain situations. In section V, we incorpo-
rate this technique into quantum Monte Carlo and in VI
we present a simple calculation of the polarizability of a
helium atom in between plates of an infinite capacitor,
using variational and diffusion Monte Carlo.

II. STOCHASTIC POTENTIAL SOLVER

The probabilistic potential theory arises from the con-
nection between Brownian motion and classical potential
theory, first made by Kakutani in 1944'°. Interestingly,
the first use of Monte Carlo to solve Schrodiger’s equa-
tion, by Fermi, Metropolis, Ulam et al was also around
the same time in 194820, However, Muller?! was the first
to layout a detailed mathematical framework and algo-
rithm to solve Laplace’s equation, which was later de-
veloped by Haji-Sheikh?? when he applied this method
for a non-zero constant heat-source term. Physically,
heat flow, natural diffusion, Brownian motion and po-
tential, all follow similar diffusion equations, and hence
can be solved by similar stochastic methods. A nice and
more detailed introduction can be found in the work of
Bevensee?3.

Of the various stochastic approaches to the potential
problem?*, we will present the “Floating Random Walk”
algorithm for both its clarity and usefulness for our pur-
pose. The main idea is best illustrated in a charge free
system (Laplace’s equation), the basic algorithm being
same even for the general problem as will be shown in
the next section. We know that the solution of Laplace’s
equation are harmonic functions which obey the Mean
Value Theorem?®

B(r) = Flcp / B(r')d2r, (1)

i.e. the potential ®(r) at any point r is the average of
the potential over a sphere of arbitrary radius d centered
at r. Here we will use » and P(r) interchangeably to
denote the same point. We assume Dirichlet bound-
ary conditions, i.e. the potential is known on the ex-
ternal surface. Neumann boundary conditions can also
be accommodated??. A simple random walk algorithm
called “The Walk On Spheres” (WOS) due to Muller?!
can solve Eq.(1) in a very elegant way.

Consider a region €2 with external boundary 02 where
the potential is specified, ®,p, (1) for r € 0, see Fig.(1).
To obtain the potential at any point P(r € ), construct
the largest possible sphere Sy centered at P(r) but fully
contained within 2. Such constructions will be called the
“maximum sphere” following Muller. The radius of this
sphere is simply the minimum distance to the boundary
0€). The averaging of Eq.(1) is carried out by sampling
points r; (and the potential ®(r1)) uniformly over the
surface of Sy. Hence the solution ®(r), represented by
the estimator (®(r)) is given by (®(r1)). Here ®(r) is
the estimate of an individual sample.

But of course, the potential ®(r1) is unknown, and
thus we need to continue the process giving rise to a
“walk” as illustrated in Fig.(1). A maximum sphere is
constructed centered about r1, and a point r5 is sampled
on it, and the walk continues until the sampled point r*
lies on, or very near the boundary 02, where the poten-
tial is known. ®(r* € 0Q) = Pupp(r*). This generates
a walk ¢ — 1 — ro---7*, see Fig.(1). An average over
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FIG. 1: A Walk On Spheres: A generic device with metal
gates on surface held at arbitrary voltages. Start by con-
structing the maximum sphere Sy of radius dy centered on
P(r). Sample a point r; uniformly on Sy. Repeat the pro-
cess by constructing sphere S; etc. The walk ends when the
sampled point r* is within a range § of boundary 9. Such
walks will never end exactly on the boundary, but with § < do
the estimate can be made arbitrarily accurate.

many such walks will provide an estimate of the potential

at P(r), the starting point. Hence, (®(r)) = (Papp(r™)).
Thus, for A such walks the mean of the estimate is

N

~ . 1 N

<(D(r)> = /\}gnoo N Z (I)app(rn)a
n=1

with an error of

50 (r) = i L2 Nq>2 o) — (D (r))?
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n=1

IIT. THE GREEN’S FUNCTION APPROACH

Much insight into the above method can be obtained
from a full mathematical treatment of the general prob-
lem, namely the Poisson’s equation

V20 (r) = —p(r)/c (2)

where p(7) is the charge density, and ¢ is the dielectric
constant of the medium. Keeping in mind the discrete
nature of walker configurations in quantum Monte Carlo,
we are interested in the potential at a point r due to a
point charge at 7/, given everything else in the problem.
This is embodied in the idea of the Green’s function,
defined as

V2 G(r,r') = =6(r—r)r,r' €Q
G(r,r") =0, 7' €0 (3)

where §2 is any volume within the region, and 02 is the
surface of that volume. Without loss of generality let’s
denote by €2 the entire system volume. The second equa-
tion is a consequence of the Dirichlet boundary condition.
In terms of this Green’s function, the potential ®(r) at
any point 7 is given by?6

d*r" - VG(r,r)®(r")

o

(4)
i.e. the potential has contributions both from the volume
charges (like doped charges) and the boundary poten-
tial (like voltages applied at metal gates on the surface).
Also, we need to know the potential ®(r’) on the surface.
Thus the Green’s function plays a crucial role in the inter-
particle interactions, if we know it then we have solved
the problem. We stress again that Eq.(4) holds for any
volume €.

As we will show, a method called the domain Green’s
function Monte Carlo (dAGFMC)?7, originally developed
to solve Schrodinger’s equation evaluates both integrals
in Eq.(4) simultaneously. This is not surprising given
the connection between diffusion (like imaginary time
Schrodinger’s equation), Brownian motion and potential
theory. The key idea is to realize that we can write Eq.(4)
for any domain D of any arbitrary shape instead of 2
which is the entire system. This will require a redefini-
tion of the Green’s function Gp(r,r’) to be defined only
within the domain D with surface 9D. Thus,

B(r) = /Q ()G (r, 7 )dr +

V2Gp(r,r) = —6(r—7'), v, €D
Gp(r,r') = 0if ' € 9D or outside D.  (5)

Since the choice of the domain D is arbitrary, we should
choose it such that Gp(r,r’) has a known analytic form
and is inexpensive to compute. In terms of this domain
Green’s function, the potential in Eq.(4) becomes

d*r' NGp(r,r)®(r)
(6)

The first integral is known exactly, and the second in-
tegral is very similar to that in Eq.(1); in fact if the
gradient term is constant, then they are identical up to
a constant factor. Hence the same WOS algorithm can
evaluate this term, provided we generalize it to the arbi-
trary domain D and sample its surface 0D, not uniformly
as in WOS, but according to VGp(r,r’). We have thus
generalized WOS to a “walk on domains” Dy, D; ... in-
stead of spheres. The iterative nature of Eq.(6) is inher-
ent to the WOS algorithm. Accumulating contributions
of Gp(r, rk+1) from each domain Dy, along the walk and
averaging over several such walks will provide an estimate
of (7). To evaluate the first integral of Eq.(6) we sample
a point s in the domain according to Gp(r,r’) and ac-
cumulate p(s) (with proper normalization)?®. Thus the
“Walk On Spheres/Domains” is a general algorithm to
solve the potential problem. For completeness we should

w(r) = [ plr")Golr.)r'+ [

oD



also mention that the Green’s function for the entire sys-
tem defined over € is given by

d*r" -V Gp(r,r")G(r" 7'
(7)

and our walk is implicitly constructing this Green’s func-
tion.

Though theoretically the domain shape can be arbi-
trary, in practice it is wise to choose a shape for which
Gp(r,r') is known and inexpensive to compute. If we
restrict ourselves to spherical domains, the Green’s func-
tion has a particularly simple form. For a sphere of radius

d centered at r,
1 1 1
=—\7T— 3 8
47r5<|r—r’| d)’ ®

and d?r’ - VGp(r,r’) = d?r, ie. the domain surface
should be sampled uniformly, exactly as in WOS. Also
we see that this captures the 1/r Coulomb term but also
provides the corrections due to the boundary conditions.

This algorithm also naturally accounts for the quan-
tum Monte Carlo walker density which is simply
Zj Q;d(r — gq;), where Q; is the charge of j-th particle
at g;. The volume integral [ pGd®r of Eq.(4) merely be-
comes » j Q;G(r,qg;), which we have already described
how to compute. To use this algorithm with quantum
Monte Carlo we simply need to convert the potential
®(R,,) into the potential energy V(R,,).

The total potential energy of the configuration is

G(r,r") = Gp(r,r") +/

oD

GD(rv 7'/)

N
V(Rm) = Z Qz (pGate(qi) + % Z Q]G(qz7 qj)
i=1 i )

N
+Z‘/self(qi)v {qz} € Rm
i=1

Viert(qi) is the effect of the charges induced in the envi-
ronment by the particle at g; itself. This effect manifests
itself in the Green’s function for the particle G(q;, q;)
which is of course divergent due to the inherent Coulomb
divergence of any charged particle. So,

2 11
‘/self(qi):% lim |G(r,q;)

r—q; Cdmer—qi |’

For the spherical domain, this simplifies beautifully; the
1/r divergence in Eq.(8) cancels with that in the self term
above leaving a contribution of —Q?%/(2dy) from the first
domain. The remainder is an extra contribution from
each subsequent domain of the same WOS; together, this
accounts for the entire potential energy.

IV. IMPROVING EFFICIENCY

Convergence properties of the WOS algorithm have
been extensively studied by Muller?! and de Laurentis2®.

For an N-particle system, each walk takes on average
n = O(|logd]|) (see Fig.(1)) steps to converge. A sepa-
rate walk has to be started from each particle at g; Vi
in the sum of Eq.(9). An N-fold efficiency can be gained
if the same walk can estimate the potential at points
neighboring the origin of the walk. If the walkers {R}
are all confined within a small region, then an algorithm
by Pickles?® to calculate electric fields, can be adapted
for this purpose.

FIG. 2: Sampling the interaction between points q and r
inside the domain Dy centered at vecrg.

The basic ideas and equations have already been intro-
duced. In the previous section we generalized the Mean
Value Theorem Eq.(1) (for spherical domains), to do-
mains of arbitrary shapes by means of

d(q) = /aD v -VGp(g,r)®(r).

For the sphere centered on the point q¢ with Gp given by
Eq.(8), this reduces to Eq.(1) which is uniform sampling
over the domain surface. However, we could as well use
an “off-centered” Green’s function which would account
for the potential not just at the domain center but at
neighboring points as well. So for a sphere of radius d
and centered at g, we need Gp(q,r) between any two
points g and 7 inside the sphere. This is easily obtained
from the method of images’

R d
dre [lg—r| |r—rollg—(d/r)?r|]

Gp(q,r)

Sampling the point r1 on the domain surface (see Fig.(2))
could still be uniform if the walk is weighted by a factor
of w; = VG%(qi,m) = d(d* — ¢?)/|qi — r1|® for each
particle at g;.

So the modification needed to WOS is very simple.
The first sphere is centered at some common point, say
the centroid of the walker configuration. The point r; is
sampled uniformly on the domain surface, and the weight
w; = w(g;,r1) is computed for each particle. From
then on, the walk continues using centered spheres us-
ing Eq.(8). The potential ®(qg;) sampled from this walk
is obtained by weighting the walk by the prerecorded



w(q;,r1)s. Thus the contribution of the applied poten-
tial, i.e. the Q;®(q;) part of Eq.(9) becomes

N
1 n N
N Z Qlw(qla 7’5 ))(I)app(rn)'
n=1

However, if the particle position g; happens to be far
from the domain center rq, i.e. near the surface of the
first domain, then the estimate of ®(qg;) is dominated by
only a few walks with large weights and the noise in the
estimate is magnified. A good rule of thumb is to choose
the first sphere of radius dg such that |g; —ro| < do/2, Vi.

This method can be directly used for a fast and efficient
estimation. Suppose we perform an initial calculation to
generate A runs, where the n-th run samples the point
7'5") on the surface of the first domain, and the run ends
on the device boundary at a point 7). If we tabulate this
information {r{", ®,,p(r5)} Vn =1,..., N, then at any
later time we can obtain a quick estimate of the potential
at any point gq; by simply evaluating

- 1
®(qi) = N Zw(th?)@app(r;;%

n

N < N)

without the need for any more time consuming walks.
The accuracy will of course depend on N'. Generating
all our estimates from the same finite set of data can lead
to undesired correlations, which can be reduced by simply
limiting the number of estimates according to the size of
the data used. A good rule of thumb is to obtain no more
than A separate estimates (for e.g. ®(q;), i =1,...,N)
from a data set of size N.

Many further improvements are possible. As will be
shown below, this approach (of using off-centered do-
mains) can be slightly modified to be used as one of
many variance reduction techniques which can be eas-
ily incorporated within the WOS scheme. However ef-
fectiveness of each technique will depend on the system
or rather on the various competing contributions to the
potential. Here we present a general overview of some
of these strategies. In section VI, we will discuss these
approaches in light of a simple application. The contribu-
tions to the potential come mainly from the effect of the
applied boundary voltages and interaction between the
volume charges. The choice of approach to reduce noise
will depend on which of these contributions dominate.

Consider for example, the approach described above of
obtaining the potential at points neighboring the walk-
origin. This can be used to reduce the variance in the
contribution of the applied boundary potentials. Suppose
we know the potential ®(r.) at some point 7. in the first
domain (it could be the origin of the walk). A stochastic
estimate of the quantity A®;. = (®(g;) — ®(r.)) using
the weight w;. = w(g;) — w(r.) will have a much smaller
variance than subtracting the separate estimates. This is
simply a form of correlated sampling. Then we can easily
obtain ®(q;) = ®(r.) + AD,..

Importance sampling is another technique that can be
considered when we have some a priori knowledge of the
potential profile; we can preferentially sample the impor-
tant regions of the device and this will reduce variance.
The form of the importance function will depend on the
device geometry and we will discuss a specific example
in section VI. For now, we will simply demonstrate a
zero variance principle, i.e. if we know the potential ex-
actly, then the potential itself is the optimal importance
function and WOS can recover the potential without any
noise in the estimate. This by itself is an uninteresting
result but the what is important to note (and will be
demonstrated later) that the variance can be reduced ar-
bitrarily if even an approximate importance function can
be arbitrarily improved to approach the optimal form.

The WOS integral is of the form
b(r) = /VGD(r,r’)<I>(r')d2fr’

For the spherical domain, a choice of importance function
I(r) leads to

B o(r') I(r") sin 6dO d¢
‘I’(’“)*/ NI(r)/1(r) [Nm«) 2 o)

we sample according to the term within the square brack-
ets, and carry a weight I(r)/NI(r’) for each domain.
Here N is the normalization, and » is the center of the
domain while 7’ is the next point in the walk sampled
on the surface of that domain. As the walk proceeds
9 — T1...7Tm, the accumulated weight becomes

1 I(T‘o) I(’I"l)
Nm—1 I(’l"l) I('I“Q) o

I(ry)
'I(TkJrl)

I(’I"m_l) . 1 I(To)
I(r,)  Nm=1I(r,)’

the walk reaches the boundary at r,, and picks up the
potential ®(r,,), the accumulated term from the walk is
I(ro)®(ry,) /N1 (ry,). If the importance function is
chosen such that I(r) = ®(r), then it is seen from the
Mean Value Theorem above that the importance function
is normalized i.e. N = 1, and the accumulated contribu-
tion from each walker is ®(rg) leading to zero variance. If
the importance function is not optimal, then the normal-
ization needs to be carried along and the zero variance
principle doesn’t hold any more.

Other standard variance reduction techniques may also
be considered. Antithetic variates can be easily imple-
mented by constructing pairs of walks; the walks in each
pair will sample opposite points on the surface of the first
domain. However, the drawback of the method is that
this can be constructed only for the first domain, beyond
this the walks will proceed independently. We find this
to yield only a marginal improvement even when the po-
tential profile is antisymmetric about the origin of the
walk. In general this method will not be very effective
for arbitrary potential profiles.



V. QMC WITH A STOCHASTICALLY
SAMPLED POTENTIAL

Now we demonstrate how quantum Monte Carlo meth-
ods can incorporate the stochastically sampled potential.
In this regard we will study the two most popular meth-
ods, namely variational and diffusion Monte Carlo. Note
that we have two different samplings or “walks”, one to
solve the Schrédinger’s equation which we will refer to
by the standard name “walkers” described before, and
the walks needed to solve the classical potential problem,
which we’ll refer to as “runs” or “runners” to distinguish
them from the walkers.

A. Variational Monte Carlo

The variational approach posits a functional form of
the trial wave-function Ur(a) which depends on a set
of parameters {a}?3. Minimization of the energy, (or
variance or a mixture of both) with respect to the set

{a}, by methods like correlated sampling3? gives the

variational estimate of the energy.
Iglif}l@I’T(a)U{l‘PT(a)) = Evwme,

where H = —%VQ + V is the Hamiltonian in a.u. The

minimization aside, E = (U |H|¥r) (dependence on a
dropped for convenience) is simply a multi-dimensional
integral which is performed by the Monte Carlo . The
estimator for this integral is called the local energy

Bt = 200

1V2Ur(R)
2 Ur(R)

+V(R). (10)

A set of randomly distributed configurations {R}
called walkers, are sampled according to the Metropo-
lis algorithm3334 to generate the distribution W2, i.e.
P(R,,) = V%, where P is the probability distribution
function (unnormalized). It is important to note here
that this sampling does not involve a knowledge of the
potential profile V(r, R,,) for the walker R,,. If M con-
figurations are generated, then (after equilibration)

Vivse = [ VIRWHRIEVR= 1 3" V(R,),
Ty

is an estimate of the potential energy of the state ¥.
Here V(R,,) is the exact potential energy of the walker
R, distributed according to U2.. However even if we use

a potential V(Rm) which is stochastic,

(V(Rpm))vmic = (V(Rm))wos (12)

This is seen from the following. The stochastic po-

tential can be expressed as V(R,,) = V(Ry) + A(Ry),

where in the limit of large samples, the error A(R,,) is
normally distributed with mean zero. Hence (A(R,,)) is,

Jim %iA(Rm) - / drP(R,) { / AP(A)dA} —0,

M—o0

(13)
simply from the zero mean property of the error A. Thus
the variational Monte Carlo algorithm can simply use the
stochastic potential V(R,,) without any other modifica-
tions. The primary requirement for variational Monte
Carlo to work is that the distribution P(A) have zero
mean.

Consider a simple system with a known potential pro-
file V(r). Suppose to calculate the expectation of the
potential energy corresponding to some given state Wp
(using variational Monte Carlo ) with a target error of
6V, we need N,, walkers. We can perform the same calcu-
lation using the stochastic potential instead of the known
form, and using N, runners (as described at the begin-
ning of this section) for each walker, a total of N,N.,
samples. Numerical experiments show that the the cal-
culation is optimal when N, = 1 and N,, is chosen such
that an independent stochastic calculation of the poten-
tial ®(P) at some point P using N, runners yield an
error & ~ O(§V). This is because variational Monte
Carlo is insensitive to the accuracy of the potential sam-
pled, as long as there are enough samples. So it is opti-
mal to sample V(R) for more configurations using more
walkers, than increasing the accuracy of each estimate.

Optimization of the trial wave-function ¥ can eas-
ily be carried out by correlated sampling as usual, ex-
cept that WOS can optimize only the variational en-
ergy and not the variance of the energy. One important
distinction from usual computer algorithms needs to be
emphasized. During the initial variational Monte Carlo
run to generate the configurations, programs record the
walker configurations, but usually not the correspond-
ing local potential energies V(R,,) (the potential part
of the local energy which depends on the wave-function
only through the walker distribution). When the opti-
mizer modifies the parameters a, changing the trial wave-
function ¥r (), the corresponding local Kinetic energy
—%VQ\I/T/\I/T also changes. And the local energy of the
walker is calculated anew because this saves storage and
a known analytic potential is usually not too expensive
to recompute.

However, recomputing the stochastic potential would
in general produce a different estimate than before, i.e.
V(R,,) will be different each time we recompute it. This
will introduce an error which will not cancel on averag-
ing, and hence destroy the optimization. This is easily
remedied by simply recording the estimate of the local
potential energy V(R,,) while recording the configura-
tions {R}. This will eliminate the overhead of recom-
puting the potential which can be expensive, the cost
being a marginal increase in storage. Using the same lo-
cal potential for a given configuration at every iteration
of the optimization process we ensure that we minimize



the correct estimate of the local energy.

B. Diffusion Monte Carlo

The stochastic potential approach is particularly com-
patible with variational Monte Carlo because VMC is lin-
ear in energy, and thus able to take advantage of Eq.(12).
Exact Green’s function Monte Carlo methods are also
linear in energy and would be able to take advantage of
this approach. However, diffusion Monte Carlo is not
an exact Green’s function method because of the short
time approximation which simulates the Green’s function
by diffusion and branching. This makes the use of WOS
with diffusion Monte Carlo not as straightforward as with
variational Monte Carlo.

To see why this is the case, we review the basic ideas
of the diffusion Monte Carlo algorithm very briefly. For
practical details regarding implementation, see reviews or
books like?:3:35. The Schrédinger’s equation in imaginary
time

—0p(R,1) = (3 = Er)d(R, 1)

can be transformed into an integral equation of the form
(R4 = [GRRD R 0IR, (19

where f(R,t) = ¢(R,t)¥r(R,t) is a product of a known
“trial” or “guiding” function Wp and the eigenfunction
. Er is an energy offset and G(R, R’;7) is the Green’s
function or propagator. The integral equation is solved
iteratively by starting with an initial distribution fiy;; =
Yinit U or rather a set of walkers distributed according to
finit- Repeated application of the Green’s function to this
state projects out the lowest energy state not orthogonal
t0 Yinit.-

The essence of the algorithm is in calculation of this
Green’s function G(R, R’; 7). If Ey, and E}, are the local
energies at points R and R’ respectively, then within dif-

fusion Monte Carlo the Green’s function is approximated
by

G(R,R';7) ~ Gaig(R,R;7)Gp(EL,EL;T), (15)

where

(R- R —1v(R))?

. /. —
Gdlff(Ra R ’ T) 27

(27T)3N/2 P

and

GB(EL, E/L;T) = exp[f(EL(R) + EL(R/) — QET)T/Q].
(16)
Gair is the Green’s function for a diffusion process,
v =Vin|¥r(R)| is a drift velocity, N is the number of
particles and Gp is a weight factor. This approximation
holds for small time step 7.

For improved stability and convergence most algo-
rithms implement the weight factor Gp by a “branch-
ing” or “birth/death” process in which np = int[Gp + ¢]
copies of the walker survive to the next step3®. Here ¢
is a random number drawn uniformly in the range (0, 1].
Thus in the regions of high potential energy G g is small
and the walkers disappear, while in the regions of low
potential energy G p is large and the walkers proliferate.
This is a marked difference from the variational Monte
Carlo algorithm since here the number of walkers and
hence the walk itself depends on our estimate of the po-
tential.

We note in passing that the local energy as defined in
Eq.(10) is the sum of kinetic and potential terms. But all
that is germane to the following discussion is contained
in the simplest unsymmetrized form of the weight Gp.
Thus

Gp(V,7) =exp[-VT]

which depends only on the potential energy V(R), is
enough to illustrate all the issues of using a stochastic
potential with diffusion Monte Carlo. Gp(EL) is sim-
ply Gp(V) with a factor which is independent of the
potential and hence not relevant to the ensuing discus-
sion. These considerations greatly simplify the notation
in the present discussion. However in the numerical ex-
periments in section VI we use the importance sampled
diffusion Monte Carlo with the Green’s function given by
Egs.(15) and (16).

Sampling with a stochastic potential has serious impli-
cations for the branching. Unlike the situation in varia-
tional Monte Carlo the effect here is nonlinear (exponen-
tial) and hence a simple averaging will not get rid of the
noise in the potential.. If we branch using a stochastically
obtained potential V', then in effect we will be branch-
ing on average according to (exp[—V7]). This is however
not equal to exp[—(V)7] (i.e. exp[—(V)7] since (V) = V)
which is the branching we need. But nevertheless,

(exp[=V7]) = exp[—(V)7] + O(?), (17)

i.e. the branching obtained by using the stochastic po-
tential is correct to second order in 7. Hence this poses
a limitation on the size of the time step that we can
use. However, the most important factor in the error is
the prefactor of 72 which depends on the device geome-
try in the problem. This error is unacceptable since our
main motivation of sampling the potential stochastically
is to improve the accuracy over other alternative meth-
ods. To improve the accuracy of the branching we could
use a large enough number of runners to estimate the
potential so that the noise is negligible, but this is very
expensive and contrary to the philosophy of improving
accuracy using a stochastic estimate of the potential.
To overcome this problem we use the penalty method3”
which modifies a random walk to accept noisy energies.
The major part of the following discussion is a direct
application of the penalty method. However as we will



show there are also some very subtle and special consid-
erations in the present use of the penalty method. Let V'
be a WOS potential estimate for some configuration R,
while V' is the exact potential for the same configuration.
Gp(V) is the previously defined branching term using
the exact potentials, while G B(f/) is the same expression
using the WOS potentials. This branching factor will
definitely be biased, and hence we introduce a modified
branching factor gg (V) which depends only on the esti-
mate V. Let IP’(V) be the probability for obtaining the
estimate V. For the calculation using the WOS potential
to be accurate, we require that the average branching
must satisfy

) = [ T A B(V)gs(7) = Ga(Vir),  (18)

so that even with a stochastic potential the walker would
branch correctly on average.

In order to make progress we have to assume a form for
the probability distribution P(V). In the limit of large
number of runners, the central limit theorem guarantees
that the distribution will be normal, but our primary
goal is to use as few runners as possible and hence the
distribution will certainly be somewhat different from a
standard normal. Nevertheless, for now we assume a nor-

mal distribution with mean V and a known variance o2.

N 1 [ 1(V V)2
exp T3 oz

P(V) = V2mo?

- (19)

The variance o? is not known in general but we assume

that we know it for now; the penalty method estimates
the necessary corrections which we will briefly mention
at the end of this section.

Foac = (o] H[¥r) _

. fd]%f(]%7 T)EL(R)
(o|¥r)

JdRf(R,T)

T—00

= lim

A simple solution for the modified branching term
g5 (V') which satisfies the above considerations is

g8(V) = exp[—(V + ¢%7/2)7]. (20)

To see that this indeed satisfies the condition that
(98(V)) = Gp(V), consider a simple form for the mod-
ified branching gp = 7(02)@3(‘7) along with the prob-
ability distribution Eq.(20) and substitution in Eq.(18)
leads directly to the form of v(0?) = exp[—0272/2].
Since o2 is always positive, this shows that we rely less
on a noisy potential and branch less than what we would
if the estimate was exact.

This can be easily extended to the importance sampled
branching factor

-
5]
(21)
where Er(V) is the local energy using the stochastic es-
timate of the potential. The analysis up to this point is
a direct extension of the penalty method of Ceperley and
Dewing®7, but certain special considerations need to be
made to apply the penalty method in the present context.
Branching according to the above factor in Eq.(21) in-
stead of the branching of Eq.(16) will produce the correct
expectation of observables independent of the WOS po-
tential V, for example the kinetic energy. If however the
observable is dependent on the stochastic potential V,
like the potential energy itself, we have to take care of
the correlations between the observable and the branch-
ing factor. This can be seen from considering the expec-
tation of the energy which is usually evaluated from the
mixed estimator? given by

g5(R,R') = exp [—(EL + E'/L + (02 + 0/2)% —2FET)

T—00

JdRIR'G(R, R';7) finit(R')EL(R) _ % ZEL(Rm)

JdRIR'G(R, R';7) finit(R')
(22)

where we have simply used the form of Eq.(14) starting with the initial distribution fin. If however, we use diffusion
Monte Carlo with a stochastic potential, then the expectation of the local energies become

~ i ZE (N ) N dedR/dVdV/df///g(R’ 1{/7‘7’7 V/;T)finit(R/)P(V/)P(v,V”)EL(V”’R)
L s dm f deR/df/df/’g(R, 1'_1’,’7 f/) V’; T)finit (R/)P(‘N/)]P’(‘N/’ .

Here §(R,R,V,V'; 7) = Gag(R, R; T)QB(V, V' T) is
the modified Green’s function, P(V) is the distribution
of the WOS estimate, and P(V, V") is the joint probabil-
ity distribution of obtaining the estimates V and V. V"
is the estimate used to evaluate the “modified” local en-
ergy Er(V"”, R). The estimate Epyc given by Eq.(23) is
not in general equal to the desired estimate Epyc. The

(23)

problem and a solution can be seen from a simple analy-
sis and a modification of the estimator that will give the
desired result. The simplest way to accomplish this is to
require the numerators and denominators in Eq.(22) and
Eq.(23) to be equal separately. Our previous choice of
gp makes the denominators equal. This is seen from the



fact that
§ = 1GairGp = [y(02,0?)e 2Te 2 TIG(R, R')

where as in prior notation A = V — V and similarly for
A’. Substitution into the integral in the denominator of
Eq.(23) proves the result.

The numerator is more tricky, and depends on the al-
gorithm for obtaining the estimator. The part of the
estimator that does not depend on the WOS estimate,
i.e. the kinetic energy is does not pose any trouble, it
integrates in the same way as the denominator. The po-
tential part could be obtained in two different ways. In
the simplest case, we could use separate and independent
estimates V and V" for the branching and the estima-
tor. In this case the probabilities would be uncorrelated
and P(V, V") = P(V)P(V"”). In this case, the integrals
again become similar to those explained before and no
modification is necessary, i.e. Ep = Fr. We will call
this the uncorrelated penalty correction. If however, we
use the same potential V' for both the branching and
the estimator, then the two estimates are identical, i.e.

PV, V") = (5(V V”) (V). In thls case a modification
of the form E(R) = E;(V, R) 4+ 027 makes the estima-

tor Epmc equal to the desired FEpmc. This can be seen
from simply substituting and performing the integration
in Eq.(23).

Up to this point we have assumed that the distribution
of the WOS potential V is normal, P(V') given by Eq.(19)
with a known noise o2 Ceperley and Dewing®” discuss
the practical issues using the penalty method. Follow-
ing them, for a potential estimate usmg n WOS runners,
we generate a sequence {VO7 .vy Va1 }, where each Vi is
independent. We use V =3, V /n as the potential esti-
mate, and x? = 3°,(V; — V)?/n(n — 1) as the estimator
for the noise o2. Their suggested form for the correction
to the noise when the distribution is not normal is

0.27_2 X27.2 X4T4 X67_6

2 2 4n(n+1)+3(n+1)(n—|—3)+

. (24)

in Eq.(20).

We conclude this section by a comment on implemen-
tation. While constructing the propagator G(R, R') it is
customary to reuse the energy Ep(R) which was calcu-
lated in a prior step during the move to the configuration
R. However, with the stochastic potential we need to
reevaluate B, (R) again, as otherwise this will introduce
a bias.

VI. NUMERICAL TESTS

We demonstrate the techniques discussed in this pa-
per in the context of a simple problem and calculate
the polarizability of helium by placing a helium atom
in the electric field generated between the plates of an
infinite capacitor. This will illustrate several features of
implementing the WOS algorithm. Alternatively, we can
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FIG. 3: A comparison of different WOS algorithms to evaluate
the potential between the plates of an infinite capacitor. The
circles represent the basic WOS calculation where each run
is started from the point where the potential is sought. The
triangles are the interpolated estimates from runners starting
from the center. The line represents the exact analytic form of
the potential. The inset shows a comparison of the errors from
the different schemes. Each estimate involved 10® runners.

model the system by a constant electric field and compare
the accuracy of quantum Monte Carlo using the stochas-
tically estimated potential. The model potential neglects
the effect of induced image charges which is small when
the plates are far apart, but the WOS solution includes
these corrections. We first describe the device, and com-
pare the efficiency and accuracy of different refinements
of the basic WOS algorithm to estimate the potential
profile within the device.

A. Estimating the potential profile by different
WOS refinements

The vertical plates of the capacitor are at a distance
zr, = %1, and plate voltages of ®,,, = £1 in arbitrary
units (units will not be important until we start the quan-
tum Monte Carlo calculations). We first test our meth-
ods of obtaining the potential profile of this device and
compare with the analytic result.

The calculations are compared in Fig.(3). The cir-
cles represent the calculations of the basic WOS, where
the potential at any point P(r) is obtained by gener-
ating runs starting from that point. Since all the runs
are computationally similar, the corresponding errors are
also similar, as seen from the large plateau in the inset.
As we approach either side of the z-axis, i.e. near the
plates of the capacitor, the errors are reduced consider-
ably since the relative proximity of one plate increases its
influence, hence reducing the variance. This is seen from
the plateau falling off near the sides.

The triangles are estimates from runs all of which origi-
nate from the same point (zg = 0), and use the interpola-



tion scheme described in section IV. Near the center this
approach does just as well as the basic approach, as seen
from the two curves in the inset coinciding. But further
out near the plates the interpolation becomes worse as
discussed earlier, since the entire estimate becomes dom-
inated by only a few walks. The point is that while the
basic WOS employed 102 runners for each of the 20 points
in the plot, the interpolated method used 103 runners for
the entire plot, hence it was about 20 times faster. In the
calculations for the helium atom we expect even the po-
larized atom to remain well confined in the central region,
and hence this approach will be three times faster (total
number of particles being three) than the basic method.

We also implemented the other methods mentioned
earlier, namely that of using antithetic variates and that
of using a reference value with the correlated sampling.
As expected antithetic variates did not show significant
improvement. Also as expected, the use of correlated
sampling using the reference value was greatly effective in
speeding up the calculation about three times (the num-
ber of particles). This also holds considerable promise
for more complicated geometries.

B. Importance Sampling

Importance sampling can be illustrated for this exam-
ple of an infinite capacitor. As shown in section , the opti-
mal importance function is the potential itself. Since the
external potential in a capacitor is simply ®(r) = z, this
can be implemented to illustrate the construction of such
functions. This can also be derived more graphically, by
noting that what we want is an importance function that
leads to sampling regions of the spheres preferentially in
the z direction so that the walks are directed towards the
capacitor plates and hence end quickly.

The actual algorithm employing this importance func-
tion is simple to describe. Consider the k-th domain Dy,
centered at ri(xg, Yk, 2zx) and radius di, and g4 is the
next point in the walk sampled on 9D, the domain sur-
face. So the optimal importance function is

I(ry41)
I(Tk)

O(rp41) g1

(I)(Tk) o Zk

d
=1+ 2k cos Ok+1
2k

where 0541 is the angle between the z = 0 plane and
the line joining 7 and rgy1. The sampling just de-
pends on the coordinate of the point we are about to
sample 741, the cbordinates of the present point 7 are
already known. Note that the optimal importance func-
tion weighted kernel is normalized.

We implement this algorithm on the computer and ob-
tain zero variance as expected. One point to note is that
the variance is limited to a small non-zero number due to
the finiteness of the skin depth § which can be made ar-
bitrarily small. A better approach is simply to switch the
shape of the domain near the boundary, or easier still, to
discretize the region near the boundary into a grid, and a
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FIG. 4: As the non-optimal importance function approaches
the optimal form, variance is reduced. For an algorithm us-
ing only spherical domains the variance approaches a limiting
value due to the finite size of the skin-depth §. Discretizing
near the boundary will eliminate this limit.

discrete equivalent of WOS will exactly converge on the
boundary and hence yield a zero variance.

Next we consider a small perturbation to the optimal
importance function, I(z) = z + €22, (¢ < 1)i.e. we mix
in a small quadratic term.

2
Zk+1 + €Zj 41
2 + €z}

I(res1) _
I(ry)

This leads to an importance function quadratic in
cos 0j41. The non-optimal importance function weighted
kernel however is not normalized and we have to carry
that in the weight. In Fig.(4) we show the result of the
calculation. We plot the result with two values of skin
depth ¢ and show that the error can indeed be arbitrarily
reduced by reducing §.

This generalizes to problems with more complicated
geometries in a straightforward way. The optimal impor-
tance function is the potential itself, and for that one, the
normalization of the importance-weighted kernel is unity.
Hence for the general problem, one possibility is to uti-
lize an approximate potential as the importance function.
This approximate solution could be obtained in any num-
ber of ways including a finite element solution of the Pois-
son problem on a discretized grid using an approximate
electron density. The solution, its gradient and Lapla-
cian could be tabulated on the same mesh to generate a
non-uniform distribution over a domain. To obtain the
correct potential at the domain center, one would need
to evaluate the approximate normalization over the do-
main surface and sample accordingly. Thus importance
sampling would greatly improve the efficiency of the al-
gorithm.



C. Polarizability of He by QMC

We implement these techniques to measure the polar-
izability of helium, and compare the results with that
obtained by using a model potential. The polarization
(estimated by (z)) is not an observable of the Hamilto-
nian, and so we have to use the mixed estimator

p=(2) = 2(2) pmc — (2)vmc

This clearly is not the best way to measure polarizability
since this increases the variance of the estimate. If the
variance of the VMC and DMC calculations are o and
o2 respectively then the variance of p is (02 + 40%)%/2.
Caffarel et al uses the Laplace transform of a two- (imag-
inary) time correlation function for a more accurate es-
timate of the polarization by quantum Monte Carlo3®.
Nevertheless, this simple approach will be able to inves-
tigate the main goal of this test, i.e. how the calculations
using the WOS potential compare with those using the
model potential.

We place a helium atom between the plates of an infi-
nite capacitor. The plates are at z;, = £10 a.u. and the
helium atom is placed at zp = 0. A voltage of £®,,, is
applied to the gates, and this is compared with a model
electric field of £, = —®,p,/7. All numbers are in
atomic units. The plates are kept sufficiently far away
from the atom such that the effect of the images charges
induced in the plates is small. This allows a comparison
of results obtained with WOS with that using a model
linear potential —&,z. Also if the plates are very close to
the atom it could interfere with the electron cloud and
distort the atom radically.

We choose a trial wave-function of the form
aqi2
Ur(qr, qo) = |1s 1s(gs))exp [ ——22—
(@r,a2) = s(a) sl exp (- 222 )

where the gs are the electron coordinates, ¢;; = |g; — g/,
and a and b are variational parameters. We can deter-
mine a to be —1/2 by imposing the cusp condition? which
reflects the divergence in the wave-function when the two
electrons approach each other. Here |1s(q)) is the single
particle orbital and same for up and down spins. This
simple two electron problem avoids the complications of
nodes in wave-functions and helps illustrate the main is-
sues of using WOS with quantum Monte Carlo.

The conditions of the problem have been set such that
the capacitor adds only a small perturbation to the he-
lium atom, and thus we need only modify the single parti-
cle orbitals very slightly to reflect the polarization of the
atom in the z direction. The wave-function of helium in
free space is spherically symmetric, and since variational
Monte Carlo does not modify the wave-function it would
not be able to polarize the atom. Hence we introduce
a parameter o which would control the polarization of
the atom. A zero value of o would correspond to the
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FIG. 5: Least square fit of the polarization data obtained from
the WOS calculation of the helium atom placed between the
plates of an infinite capacitor. The result used is the mixed
estimator obtained from the VMC and DMC data presented
in Table I. The data for the model calculation is not shown
since it nearly overlaps with the WOS data.

unpolarized case.We choose a form

4

[1s(q)) = (14 ag:) Y ¢ exp(—A;q),
=0

where ¢, is the z-coordinate of g, and the parameters
cj, Ajs are obtained from calculations of Clementi and
Roetti?®. We use pre-optimized values of these param-
eters (c; = 2.063076 x 1071, cp = 2.2346 x 1071, c3 =
4.082 x 1072, ¢4 = —9.94 x 1073, ¢5 = 2.3 x 1072 and
A1 = 14171, Ay = 2.3768, A3 = 4.3963, \y = 6.527, A5 =
7.9425).

We optimize the Jastrow parameter b and the polariza-
tion parameter a by correlated sampling. When we use
the stochastic potential we minimize only the mean of the
local energy, and not any combination of the variance. As
described before, we record not only the configurations
{R}, but also the local potential energy V(R,,) V m for
use in minimization of the variational energy. The polar-
ization obtained from variational Monte Carlo with the
optimized parameters provide an estimate for the polar-
ization, but as noted earlier this is not very accurate since
polarization is not an observable of the Hamiltonian.

D. Polarizability Results and Analysis of the
Penalty Method

We test our code by calculating the ground state en-
ergy of a helium atom, our result —2.90361(9) a.u. com-
pares well with the best known theoretical estimate of
—2.903724377034119598 a.u.%? and experimental value of
—2.9038 a.u.*'. Next we carry out the calculations in
presence of an electric field by two different methods as
described before. WOS refers to the calculations using



the stochastic potential, and “model” refers to the linear
potential model. The results are shown in Table I. From
a least-square fit of the data our estimate for the polar-
ization is 1.417(16) a.u. from the WOS data as in Fig.(5)
and 1.362(16) a.u. from the model calculation, which can
be compared with 1.382(16) a.u. as obtained by Cafarrel
et al.?8.

The result suffers from the drawbacks of our estimator
as discussed before, but the main point to note is the
comparison between the WOS and “model” results. The
difference in the result comes from the induced charges
in the capacitor (not captured in the model) as will be
discussed below. From Table I we see that the results
agree within error-bars for both the optimized VMC cal-
culations and DMC. The diffusion Monte Carlo calcula-
tions were carried out using only twenty runners for each
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walker configuration. We also use the penalty method
the results of which will be discussed next.

To investigate the effect of using the WOS potential
in diffusion Monte Carlo we study the time-step error,
since we expect the effect of the using the stochastic po-
tential to be magnified with increasing time-step, as seen
in Eq.(17). In Fig.(6) we compare the DMC ground state
energy from the model potential calculation to that us-
ing WOS for different number of runners (per walker).
The uppermost curve labeled “model” is the linear po-
tential model which shows a quadratic scaling with the
time-step. The lowermost curve labeled WOS(1) repre-
sents DMC calculations using a single runner (per walker)
without any penalty correction. This obviously suffers
from the branching error which is magnified at larger
time-steps.

Eg Dz
VMC DMC VMC DMC Mixed
&, WOS | model WOS | model WOS ‘ model WOS | model WOS | model
0.02| -2.888461(92) |-2.888080(97) |-2.904313(85) [-2.904149(89) |0.0268(6) |0.0257(6) |0.0277(7) |0.0277(7) |0.0286(15) |0.0297(15)
0.04| -2.889087(95) |-2.888904(93) |-2.905298(82) [-2.904932(82) |0.0611(6) |0.0469(6) |0.0595(6) |0.0529(6) |0.0579(15) |0.0589(15)
0.06-2.890392(100)|-2.890119(94) |-2.906741(87) |-2.906314(81) |0.0827(6) |0.0702(7) |0.0830(7) |0.0776(7) |0.0833(15) |0.0850(16)
0.08(-2.892102(100)|-2.891927(99) |-2.908636(84) [-2.908208(86) |0.1084(7) |0.1081(7) |0.1098(7) |0.1109(7) |0.1112(16) |0.1137(16)
0.10|-2.894533(110) |-2.894134(95) |-2.911209(89) |-2.910856(89) |0.1332(7) [0.1332(7) [0.1385(7) |0.1341(7) |0.1438(16) [0.1350(16)

TABLE I: Calculation of polarization of helium with quantum Monte Carlo. The system consists of a helium atom placed

between the plates of an infinite capacitor as described in this section.
stochastic potential using the WOS algorithm, and the other using a model linear potential.

Two similar calculations were run, one using the
The variational Monte Carlo

results here are obtained by optimizing the trial wave-function. For DMC, we used a time-step of 7 = 0.01.

If however we increase the number of runners (per walker)
to 5, we see from the WOS(5) curve that the result is im-
proved but still suffers from the bias. The use of the
penalty method corrects this problem, and the curve
marked penalty(5) follows the model potential for the
entire range of 7 that we tested. We also note that the
correction of Eq.(24) did not make a difference to the cal-
culation within the given error-bars. If we increase the
number of runners to about twenty, then the basic WOS
calculation without the penalty method is greatly im-
proved, and it overlaps with the correct result for a large
range of 7 up to about 0.2 in this calculation; but beyond
that the bias in the result becomes apparent. Since the
calculations using the penalty method with five runners
and twenty runners (per walker) overlapped with each
other we did not show them separately in the figure.

Though the model and the penalty calculations run
parallel, they are offset by a constant amount. This is
to be expected since the model calculation neglects the
effect of the charges induced on the capacitor plates. A

very simple calculation using dipole images (but neglect-
ing multiple reflections) estimates this effect to be about
2 x 107% a.u., the same order of the observed shift of
3 x 10~% a.u. Thus the WOS calculation can capture the
induced charge effect neglected by the model.

To study the effect of the penalty method, we compare
in Fig.(7) the effect of the two different types of penalty
corrections that we discussed in section V B. In the calcu-
lations we use a large number of runners (per walker) to
estimate the potential to be used in the branching term.
The first estimator uses a separately sampled value, we
call this the uncorrelated penalty approach. We can con-
struct another estimator using the same estimate that
we use for the branching, but then we have to add an-
other correction to it as discussed before. Fig.(7) shows
that the uncorrelated penalty method has a faster con-
vergence, but both approaches converge for large number
of runners (per walker).

Also shown in Fig.(7) is the estimate of the model cal-
culation. We see that the WOS calculations converge to
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FIG. 6: Ground state DMC energy of the helium atom in an
electric field of £, = 0.1 for different time steps. In paren-
thesis is the number of runners used per walker for the WOS

calculations. This is compared with the calculation using the
model field.
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FIG. 7: Testing the convergence of the two penalties. The un-
correlated penalty method using an independent uncorrelated
(to the branching) potential estimate converges much faster
than the approach where we modify the estimator. However,
for a large number of runners the second converges to the
correct result from above. The calculation was carried out at
7 = 0.25. The difference from the model is due to the induced
charge effect.

a value lower than the model. This is the induced charge
effect as mentioned earlier. As we increase the separa-
tion of the capacitor plates, this effect decreases and for
a plate separation of about 100 a.u. (keeping the electric
field constant) the WOS results converge to the model
value. This demonstrates another important feature of
the algorithm. In order to keep the field constant, we had
to increase the gate voltages. The algorithm remained
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stable under this scaling.

The WOS calculations with a single runner (per
walker) were only about four times slower than that with
the model potential, this is not too bad considering the
generality of the WOS method. The WOS method can be
applied to any complicated geometry for which a model
might not exist, however the time taken by the code will
also depend on the complexity of the device geometry.
These calculations scale linearly with the number of run-
ners, for instance the calculation with twenty runners was
about twenty times more expensive than the one with a
single runner.

VII. CONCLUSIONS

We have demonstrated that a stochastically obtained
potential can be used efficiently with popular quantum
Monte Carlo methods, specifically variational and diffu-
sion Monte Carlo. To this end we have modified and im-
proved an efficient “Walk On Spheres” algorithm which
can handle arbitrary device geometries and gate voltages
and even take care of induced charge effects of the evolv-
ing walker configurations. This approach will make pos-
sible accurate application of quantum Monte Carlo to
realistic models of physical devices.

We also demonstrated the application of the penalty
method to account for the stochastic nature of the po-
tential. To use it with diffusion Monte Carlo we needed
to modify the branching term and use a potential esti-
mate which had to be uncorrelated with the estimator.

The future goals involve applying this method to more
complicated devices like quantum dots in semiconduc-
tor heterostructures. Also of interest is to extend this
method with other quantum Monte Carlo methods like
reptation and domain Green’s function Monte Carlo.
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